If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-16x-14=0
a = 8; b = -16; c = -14;
Δ = b2-4ac
Δ = -162-4·8·(-14)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{11}}{2*8}=\frac{16-8\sqrt{11}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{11}}{2*8}=\frac{16+8\sqrt{11}}{16} $
| -16=-q4–14 | | -2+6(3n+3)=142 | | 3x-4(-7x+6)=131 | | -30=-3(1+y) | | 2x-(x+5)=-1 | | -4(y+3)=3y(-7) | | 7+d/2=12 | | x+0.5=0,75 | | x=-1+1 | | -4(w+4)=2w-9+3(4w+1) | | -85=-8(1+x)-3x | | 5y-2+5y=3 | | 12x-3/2+6x=8x-1.5 | | -5(3x+2)=-25 | | 5x2+12x+6=0 | | -134=-2v+7(1+7v) | | y=-0.5+-1.5 | | x=-0.5+-1.5 | | 1⁄2r-2=1 | | 1⁄2r-2=0 | | 0.5+4=3/2x+2 | | -4x=6x-14 | | 4z-3=45 | | (2x-5)+52+(5x-16)=180 | | x=-2.4+0.4 | | 2x-x+x+3x-x=54 | | 5x+2(x+2)=-31 | | (2x-5)+52+(5x16)=180 | | 5x+2=3-2/7x | | 5x/12-3=x/4+5 | | 7/x=(x-2)/5 | | 6x-4(-4x-16)=-156 |